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Abstract. A relativistic virial theorem is derived for
atoms in a general manner. The virial ratio consists of
the usual /T term and a correction term W/T, where T,
V, and W are the kinetic energy, the potential energy,
and correction terms, respectively. Explicit forms of W
are presented for four specific nuclear potential models.
Numerical calculations for a uniform nuclear charge
model show that the magnitude of the correction term
W/T increases with increasing atomic numbers and that
it modifies the ratio V/T considerably for atoms with
large atomic numbers in particular.
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1 Introduction

In nonrelativistic atomic and molecular calculations,
atomic nuclei are usually treated as point charges (PCs),
while in relativistic calculations they are often assumed
to have finite sizes and such nucleus models are adopted
as a uniformly charged sphere (UCS), a Gaussian charge
distribution (GCD), and a Fermi charge distribution
(FCD) [1, 2].

The virial theorem (VT) for atoms in the PC nuclear
potentials is well known; for nonrelativistic atoms it is
presented in many textbooks (e.g., Ref. [3]) and review
articles (e.g., Ref. [4]) and for relativistic atoms it was
derived by Kim [5] and Mohanty and Clementi [6]. Al-
though the VT for a Dirac one-particle system in a
general potential was reported by Rose and Welton [7]
about a half century ago, the relativistic VT for many-
electron atoms in general nuclear potentials is not
known.

In this article, we derive the relativistic VT for many-
electron atoms in a general nuclear potential and apply it
to the specific nuclear potentials appearing in the
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previously mentioned four kinds of nucleus models, PC,
UCS, GCD, and FCD. We also present some numerical
results for the UCS model using the Dirac—Fock—
Roothaan (DFR) method [5]. Throughout this report,
Hartree atomic units are used.

2 VT in a general nuclear potential

For an n-electron atom, we consider an arbitrary
normalized four-component wave function,

d(1) =y(ri,ra, ... 1) (1)
and its normalized scaled function with respect to the
position coordinates, r; (i = 1, ..., n), of electrons,

G(2) = 2"y o,y (2)
The energy expectation value over the scaled function is
E(2) = (¢()|H|¢(2) (3)

where the Dirac—Coulomb—Breit Hamiltonian I-z [1, 5]
may be conveniently divided into kinetic energy, 7', mass
energy, M, and total potential energy, V, components:

H=T+M+V (4)

in which

n
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In Egs. (5) and (6), c¢ is the speed of light, a; and f5; are
Dirac matrices [5], and p; = —1V; is momentum operator
for electron i. In Eq. (7), v(r;) is the nuclear attraction
potential for electron i and g(r;) is the Coulomb—Breit
interaction:
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where r; =1, —r; and r; =|r; | are the relative

position’ vector and distance between two electrons i and

J.
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We regard the scale factor 4 as a variational parameter
and determine its optimum value by requiring that

S o(e) ¢<1>>
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n), Eq. (3) is rewritten

/ /
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OE(2)

Ny <¢(1)|f|¢(1)> + <¢(1)

+ <¢(1)

(10)
The operator in the third term turns out to be
0 1
av(r/i):—?rV”v(r”) , (11)

where r” =1/ and V” is the gradient operator with
respect to the position vector r”.

If the wave function ¢(1) given by Eq. (1) is already
optimum, we may put A =1 in Egs. (10) and (11) and

obtain a VT:
<f>(1)>

Zri - V(r) | o(

<¢<1>|ﬂ¢<1>>+<¢<1> > glry)

1)>=0.

o
(12)

By adding the nuclear potential ), v(r;) to the second
term and subtracting it from the third term, we have
another form of the VT:

T+V+W=0, (13)

where T is the kinetic energy corresponding to the first
term in Eq. (12), V' is the expectation value for the total
potential-energy operator defined by Eq. (7), and W is
the expectation value,

Z w(r;)

i

W= <¢>(1)

¢(1)> : (14)

of an operator defined by

w(r) = —r-Vv(r) —v(r) . (15)

The VT given by Eq. (13) shows that the virial ratio
consists of the familiar /T term and a correction term
W/T.

Since the total energy, E, is expressed with the mass
energy, M = (M), as

E=T+M+7V , (16)
we obtain an alternative form of the VT of Eq. (13) as
E-M+WwW=0. (17)

For hydrogen-like atoms, the VT of Eq. (17) reduces
to the VT for the Dirac one-particle system reported
in Ref. [7]. We note that all the results in this section
remain unaltered even if the Breit correction in Eq. (8) is
not considered.

3 VT for specific nuclear potentials

The VTs of Egs. (12), (13), and (17) take different forms
for different nuclear potentials, v(r). In this section,
explicit expressions for the operator w(r) defined by
Eq. (15) are derived for four nuclear potentials often
used in current relativistic atomic calculations. If
we substitute these results into Eq. (14), we obtain
the expectation values, W, appearing in the relativistic
VTs.

3.1 PC nucleus

The nuclear potential is written as

v(r) =—=Z/r, (18)
where Z is the nuclear charge and r = |r|. Using Euler’s
theorem for homogeneous functions [8], we find

w(r)=0 . (19)
Hence the W term in the VTs is absent. This form of the
VT is already known in the literature [5, 6].

3.2 UCS nucleus

The UCS nuclear potential takes the form [1]
VA 2 R—7r Z r—R
=5 @ ]o () o7
(20)

where R is the nuclear radius and ©(x) is Heaviside step
function. By putting this potential into Eq. (15) and
noting that terms arising from the differentiation of the
step functions cancel out in the integral of Eq. (14), we
obtain

@R w

which contributes only for the region r < R.




3.3 GCD and FCD nucleus models

In the GCD and FCD nucleus models, the nuclear
potential is commonly written as [1, 2]

() = -2 [ ds pls)

r —s|
where p(s) is a spherical nuclear charge density and the
integration is performed over the whole space of the
nuclear charge coordinate, s. The explicit forms of p(s)
in the GCD and FCD models are

; (22)

p(s) = (a/m)** exp(—as?) (Gauss) , (23)

p(s) = po/{1 +exp[(s —a)/d]} (Fermi) , (24)

where «, pg, a, and d are parameters [1, 2].
By putting Eq. (22) into Eq. (15), we obtain

w(r):z/dsp(s)l’“_s)Jr ! ] . (25)

|1-_ S|3 |l‘ —S‘

4 Numerical example

In order to see how the virial ratio V//T is affected by the
W|T term, we performed DFR calculations [5] on
various neutral atoms in their ground states. We adopted
the UCS nucleus model, in which the nuclear radii, R,
were taken from Visscher and Dyall [9]. We assumed the
speed of light to be 137.0359895. As in a previous
calculation [10], we adopted Gaussian-type functions
(GTFs) as basis functions and neglected the Breit
interaction term in the two-electron operator of Eq. (8).

For our purpose, it is necessary to compute atomic
integrals of the w operator (Eq. 21) over the GTFs,
whose radial part is given by

Rui(r) ="t exp(=(r?) (26)

where ( is exponent parameter (EP) and » is a positive
integer. If we are reminded that w(r) = w(r) for the UCS
nucleus model, the integral is obtained as

Table 1. Relativistic energies and virial ratios for selected atoms.
For each atom, the first line is the result using the nonrelativistically
optimized wave function (Ref. [11]), while the second line is the
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/o dr 7 Rz (r)w(r) Ry (r) = (3Z/2)R¥[F (&) = Fra (€)]

(27)
where R is the nuclear radius, v=(n+n’)/2,
&= ((+R?, and

F(t) = /01 du® exp(ftuz) (28)

is the reduced incomplete Gamma function.

Some results of our numerical calculations are sum-
marized in Table 1. For each atom, the first line shows
the result using nonrelativistically (or Hartree—Fock—
Roothaan) optimized EPs of the GTFs [11], while the
second line is the result using relativistically (or DFR)
optimized EPs. The PC and UCS nucleus models were
adopted in the nonrelativistic and relativistic optimiza-
tions, respectively. In both optimizations, the best EPs
were obtained by searching the lowest-energy points in
the EP spaces referring to the total energy values only.
In the table, the magnitudes of the total, E, potential,
V, and correction, W, energies increase with increasing
atomic number, Z. For both the nonrelativistic and the
relativistic basis functions, the contribution of W to the
VT is not negligible especially for heavy atoms. Another
aspect observed in Table 1 is that the —(V + W)/T
values from the relativistically optimized basis sets are
very close to unity.

5 Conclusion and remarks

We have derived a VT in relativistic atoms with a general
nuclear potential and applied it to four kinds of nuclear
potentials which are currently adopted in relativistic
calculations. The virial ratio consists of the usual V/T
term and a correction term W/T. Numerical calculations
have shown that the W/T term modifies the virial ratio
V|T considerably. They have also shown that the
relativistic VT is useful to check the relativistic optimal-
ity of the EPs in basis sets.

We finally note that the nonrelativistic VT can be
obtained immediately from Eqgs. (12) and (13) by

result using the relativistically optimized wave function. For the last
two atoms, relativistically optimized wave functions are not
reported. A(n) denotes 4 x 10"

z Basis -E -V W -VIT —~(V+W)|T
2 6s 2.861285098 5.722831202 3.587763(-8) 1.00000045 1.00000044
2.861285099 5.722834922 3.588069(—8) 0.99999980 0.99999979
10 12s8p 1.286912043(2) 2.576723402(2) 7.514452(-5) 1.00000140 1.00000111
1.286912127(2) 2.576726732(2) 7.532291(-5) 1.00000030 1.00000001
18 16sllp 5.286825096(2) 1.061126261(3) 1.309392(-3) 1.00000259 1.00000136
5.286826817(2) 1.061128612(3) 1.322530(-3) 1.00000125 1.00000001
36 20s15p9d 2.788856367(3) 5.653841348(3) 4.519709(-2) 1.00000984 1.00000184
2.788858943(3) 5.653865211(3) 4.634691(-2) 1.00000822 1.00000002
54 22s18pl2d 7.446874164(3) 1.535812148(4) 4.895249(-1) 1.00003491 1.00000303
7.446891583(3) 1.535828923(4) 4.904589(-1) 1.00003198 1.00000004
80  25s18pl5d10f 1.964844414(4) 4.228812291(4) 7.609342 1.00019934 1.00001937
1.964884469(4) 4.229259637(4) 7.699265 1.00018214 1.00000006
86 25s21pl5d10f 2.360145366(4) 5.154207965(4) 1.393601(1) 1.00029175 1.00002129
103 28s21pl18d13f 3.770319486(4) 8.723497876(4) 7.383045(1) 1.00092503 1.00007790
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replacing 7 with 27xr = (dnr(1)]— X2, Aipnr (1)),
where ¢ngr(1) is an optimum nonrelativistic wave
function.
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